

Centro Singular de Investigación en **Química Biolóxica** e **Materiais Moleculares**

Bottom-up Approach to Nanographenes by Merging Organic Chemistry and On-Surface Synthesis

Diego Peña *CiQUS y Departamento de Química Orgánica Universidade de Santiago de Compostela*

Gandía 16/10/2023

PAHs: Polycyclic Aromatic Hydrocarbons

Hydrocarbons composed of multiple aromatic rings, mostly fused benzene rings

- **PAH World Hypothesis**: pre-RNA model of life's origin based on the self-organization of PAHs by π -stacking

PAHs as Advanced Molecular Materials

How does a family of pollutants become a privileged advanced material?

 π -electrons on aromatic rings make the difference

Importance of the geometry in PAHs

-Unique combination of properties

GRAPHENE

The Nobel Prize in Physics 2010 Andre Geim, Konstantin Novoselov

Andre Geim

Photo: U. Montan Konstantin Novoselov

Electric Field Effect in Atomically Thin Carbon Films

K. S. Novoselov,¹ A. K. Geim,¹* S. V. Morozov,² D. Jiang,¹ Y. Zhang,¹ S. V. Dubonos,² I. V. Grigorieva,¹ A. A. Firsov²

Science 2004, 306, 666

Feng, Müllen and co, Angew. Chem. Int. Ed. 2012, 51, 7640

d material? CiQUS

Bottom-up approach to three-fold symmetric nanographenes CiQUS

Angew. Chem. Int. Ed. 2014, 53, 9004

AFM with functionalized tips

The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy

Leo Gross,1* Fabian Mohn,1 Nikolaj Moll,1 Peter Liljeroth,12 Gerhard Meyer1

Pentacene (C₂₂H₁₄) on NaCl

28 AUGUST 2009 VOL 325 SCIENCE

Ultra High Vacuum (UHV) Cryogenic Temperature (5 K)

CiQUS

AFM with functionalized (UHV, 5K)

Leo Gross and coworkers IBM Research Zurich

Bottom-up approach to three-fold symmetric nanographenes CiOUS

Angew. Chem. Int. Ed. 2014, 53, 9004

AFM with submolecular resolution

Credit: IBM Research

Single molecule reactions by voltage pulse

Dendritic Starphene

Scanning Tunneling Spectroscopy (STS) HOMO-LUMO gap = 4.1 eV 9 Clar sextets

Clar's rule: Predicts stability and gaps by grouping π -electrons into sextets within a ring

Manuel Vilas-Varela Chem. Eur. J. **2018**, *24*, 17697

C₇₈H₄₂

Revisiting an Iconic Molecule: Kekulene

12 rings [18]annulene pore

Annulene Model

global delocalization

lago Pozo

I. Pozo, Z. Majzik, N. Pavlicek, M. Melle-Franco, E. Guitián, D. Peña, L. Gross, D. Pérez J. Am. Chem. Soc. 2019, 141, 15488

AFM to characterize insoluble nanographenes and mixtures

Molecular Structure of Asphaltenes "The Choresterol of Oil Refineries"

J. Am. Chem. Soc. 2015, 137, 9870

Identification of PAHs in the Murchison Meteorite Meteoritics & Planetary Science 2022, 57, 644

How to obtain larger/more exotic graphene molecules?

1) Characterization of graphene molecules

2) Combining solution and on-surface synthesis

-Last synthetic step on surface -Annealing under UHV

Q. Fan, J. M. Gottfried, J. Zhu Acc. Chem. Res. 2015, 48, 2484

Combining In-Solution and On-Surface Synthesis CiQUS

Table 1. Overview of successfully conducted on-surface reactions carried out in ultra-high vacuum. Substrate and reference Reaction name Stimulus Cu.[11, 14-20, 42] Aq.[20-26, 42] Ullmann coupling ΔT Au.[13, 19, 26-3441, 81] CaCO, [35-37] HOPG,^[42] NaCl@Au,^[38] h-BN@Ni^[39] graphene@Ni^[39] Sapphire,^[40] HOPG^[71] Ullmann coupling hv Cu,[64,68,69] Ag,[53,63,65,66,68,69] Glaser coupling ΔT Au.[68, 69] Cu.[53] Aq.[53] Au[53] Glaser coupling hv Bergman cyclization ΔT Cu,^[60] Aq^[58] Cu,^[91] Au^[94] Huisgen cycloaddition ΔT Ag. [48, 26, 47] Au. [26, 49] Pt. [51, 52] Scholl reaction ΔT Ru^[50] HOPG^[71] Cu^[72] Ring-opening polymerization ΔT NHC oligomerization Cu^[56, 57] ΔT Cu,[80,83] Aq.[84,80,82,85,87-89] Condensation reaction ΔT Au^[73-75,77-81] Aa^[86] Condensation reaction ΔT Au,^{190]} Ag,^{196]} NaCl@Ag^{196]} Carbonyl-analogue addition ΔT Au^[54] McMurry reaction ΔT Au^[61] [2+2+2] cycloaddition ΔT Au^[95] [2+2] cycloaddition ΔT CaCO₂^[97] [2+2] cycloaddition hv Cu,[67] Ag[67] Decarboxylative polymeri- ΔT zation Ni^[46] Desulfurization + recyclization ΔT

SCHOLL REACTION

CYCLODEHYDROGENATION

Lindner, R.; Kühnle, A. ChemPhysChem 2015, 16, 1582

Exotic molecules: three-pore nanographene

With Szymon Godlewski & co (JU Krakow) and Aran García-Lekue (DIPC)

Exotic molecules: three-pore nanographene

With Szymon Godlewski & co (JU Krakow) and Aran García-Lekue (DIPC)

Exotic molecules: three-pore nanographene

With Szymon Godlewski & co (JU Krakow) and Aran García-Lekue (DIPC)

Ullmann Coupling

Ueber symmetrische Biphenylderivate;

von Fritz Ullmann,

unter Mitwirkung von Gustav M. Meyer¹). Oscar Loewenthal²) und Emilio Gilli³).

Erhitzt man Jodbenzol mit Kupfer, so beobachtet man, dass das Metall nach einiger Zeit seinen Glanz verloren hat und dass das Reactionsproduct fast reines Biphenyl darstellt,

 $2\langle \rangle J + 2Cu = \langle \rangle + 2CuJ.$

Ullmann, F. Justus Liebigs Ann. Chem. 1904, 332, 38

Thermally induced on-surface Ullmann coupling

80

STM

AFM (CO tip)

S. Zint et al. ACS Nano 2017, 11, 4183

A nanographene with [18]annulene pore

STM (5K, CO tip) on Au(111)

1) Characterization of graphene molecules

- 2) Combining solution and on-surface synthesis
- 3) Elusive graphene nanostructures

AFM/STM under ultra-high vacuum conditions

Synthesis of Large Acenes

-Linear fusion of benzene rings: narrowest zig-zag GNRs -One Clar sextet: the larger the length, the smaller the HOMO-LUMO gap -Diradical character: unstable under ambient conditions

Pentacene: Paradigmatic organic semiconductor

Hexacene:

Isolated in the solid state, M. Watanabe et al. Nat. Chem. 2012, 4, 574 Generated on Ni surface, D. F. Perepichka, F. Rosei et al. ACS Nano 2013, 7,1652

Heptacene: Isolated in the solid state R. Einholz et al. J. Am. Chem. Soc. 2017, 139, 4435

Octacene

Nonacene

Generated in cryogenic noble gas matrices C. Tönshoff, H. F. Bettinger Angew. Chem. Int. Ed. 2010, 122, 4219

Decacene?

On-Surface Synthesis of Decacene

CiQUS

Fátima García

Angew. Chem. Int. Ed. 2017, 56, 11945

On-Surface Synthesis of Decacene

On-Surface Synthesis of Decacene

Open-shell nanographenes

CiQUS anogune

CIC

Triangulene-based NanoStar

With Nacho Pascual and coworkers (nanoGUNE)

Angew. Chem. Int. Ed. 2021, 60, 25224

Triangulene-based NanoStar

With Nacho Pascual and coworkers (nanoGUNE)

Angew. Chem. Int. Ed. 2021, 60, 25224

spin excitations

of six S = 1 units

Aza-[5]-Triangulene

Angew. Chem. Int. Ed. 2023, ASAP

With Nacho Pascual and coworkers (nanoGUNE)

Aza-[5]-Triangulene

E CIQUS

Angew. Chem. Int. Ed. 2023, ASAP

With Nacho Pascual and coworkers (nanoGUNE)

- 1) Characterization of graphene molecules
- 2) Combining solution and on-surface synthesis
- 3) Elusive graphene nanostructures
- 4) Bottom-up approach to graphene nanoribbons

and nanoporous graphene

2-5 nm is OK...what about 10-100 nm?

On-Surface Synthesis of GNRs

Atomically Precise Bottom-Up Fabrication of Graphene Nanoribbons

Müllen, Fasel et al. *Nature* **2010**, *466*, 470

200 °C

Au(111)

Ullmann

Br

Br

400 °C

Cyclo-

dehydro-

STM, 5K, Au(111)

CiQUS

Band gap = 2.50 eV

n = 7

A = armchair

Substrate-Independent Growth of Atomically Precise Chiral Graphene Nanoribbons With D. de Oteyza (CFM), J. I. Pascual (nanoGUNE), A. García-Lekue (DIPC) and co.

(3,1)-chGNRs

STM (5K, CO tip) on Au(111)

ACS Nano 2016, 10, 9000

Stability of GNRs

With Dimas de Oteyza (CFM), Pavel Jelinek (FZU) and co

Stability of GNRs

With Dimas de Oteyza (CFM), Pavel Jelinek (FZU) and co

Nature Chem. 2022, 14, 1451

Lateral Fusion of Graphene Nanoribbons

Nanoporous Graphene

飞 🔍 🖓 🍋 🍋

with Aitor Mugarza, Cesar Moreno and co (ICN2-Barcelona) and Aran García-Leuke (DIPC-San Sebastián)

Science 2018, 360, 199

Nanoporous Graphene

CiQUS

-Semipermeable -Semiconductor (1.0 eV)

-Molecular Filter -Sensor

-Gas separation -Water desalinisation

Bottom-up synthesis of multifunctional nanoporous graphene C. Moreno, M. Vilas-Varela, B. Kretz, A. Garcia-Lekue, M. V. Costache, M. Paradinas, M. Panighel, G. Ceballos, S. O. Valenzuela, D. Peña, A. Mugarza *Science* **2018**, *360*, 199-203

Nitrogen-doped Nanoporous Graphene

飞 ICN29 CiQUS

Hybrid Nanoporous Graphene

Combining precursors:

Atomically Sharp Lateral Superlattice Heterojunctions Build-in Nitrogen-doped Nanoporous Graphenewith A. Mugarza and coworkersAdvanced Materials 2022, 34, 2110099

Hybrid Nanoporous Graphene

Atomically Sharp Lateral Superlattice Heterojunctions Build-in Nitrogen-doped Nanoporous Graphenewith A. Mugarza and coworkersAdvanced Materials 2022, 34, 2110099

Hybrid Nanoporous Graphene

Atomically Sharp Lateral Superlattice Heterojunctions Build-in Nitrogen-doped Nanoporous Graphenewith A. Mugarza and coworkersAdvanced Materials 2022, 34, 2110099

Larger Pores in NPG

THANKS!

IBM Research Zurich

Leo Gross, Gerhard Meyer, Bruno Schuler, Niko Pavlicek, Nikolaj Moll, Zsolt Majzik, Fabian Schulz, Shadi Fatayer, Florian Albrecht

nanoGUNE, DIPC, CFM San Sebastián

Nacho Pascual, Dimas de Oteyza, Aran García-Lekue, Martina Corso, D. Sánchez Portal Jigcheng Li, Néstor Merino, Niklas Friedrich, Guillaume Vasseur, Eduard Carbonell, Enrique Ortega, Celia Rogero, Jeremy Hieulle,, Pedro Brandimarte, Mads Engelund

••• ICN29

ICN2 Barcelona

Aitor Mugarza, César Moreno, Gustavo Ceballos, Markos Paradinas, Mirko Panighel, María Tenorio

TU Dresden

Francesca Moresco, Justus Krüger, Thomas Lehman, Frank Eisenhut, Dimitry Skidin, Gianaurelio Cuniberti

Jagiellonian University Krakow

Szymon Godlewski, Marek Szymonski, Rafal Zuzak, Marek Kolmer

> AFM/STM under ultra-high vacuum conditions

COMMO (Catálisis Organometálica y Materiales Moleculares Orgánicos)

CiQUS

XUNTA DE GALICIA CONSELLERÍA DE EDUCACIÓN E ORDENACIÓN UNIVERSITARIA ED431C 2020/22

PID2019-110037GB-I00 PID2019-107338RB-C62

H2020 FET-OPEN #863098

FLAG-ERA

GOC

Nanoporous Graphene Integration

